3.498 \(\int \frac{\sqrt{\cos (c+d x)} (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=88 \[ -\frac{(A-B) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a d}+\frac{(3 A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

[Out]

((3*A - B)*EllipticE[(c + d*x)/2, 2])/(a*d) - ((A - B)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A - B)*Sqrt[Cos[c
+ d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.220289, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {2954, 2977, 2748, 2641, 2639} \[ -\frac{(A-B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}+\frac{(3 A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{d (a \cos (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

((3*A - B)*EllipticE[(c + d*x)/2, 2])/(a*d) - ((A - B)*EllipticF[(c + d*x)/2, 2])/(a*d) - ((A - B)*Sqrt[Cos[c
+ d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} (A+B \sec (c+d x))}{a+a \sec (c+d x)} \, dx &=\int \frac{\sqrt{\cos (c+d x)} (B+A \cos (c+d x))}{a+a \cos (c+d x)} \, dx\\ &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac{\int \frac{-\frac{1}{2} a (A-B)+\frac{1}{2} a (3 A-B) \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{a^2}\\ &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{(A-B) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a}+\frac{(3 A-B) \int \sqrt{\cos (c+d x)} \, dx}{2 a}\\ &=\frac{(3 A-B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d}-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 6.4759, size = 1208, normalized size = 13.73 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x]),x]

[Out]

(((3*I)/4)*A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*(A + B*Sec[c + d*x])*((2*E^((2*I)*d*x)*Hypergeometric2F1[1
/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I
)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)
*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c
] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 +
E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x)
)*Sin[c])))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])) - ((I/4)*B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*(A +
 B*Sec[c + d*x])*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sq
rt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*
c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hy
pergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (
2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I
)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*x]))
+ (Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x])*((-2*(A - B + 2*A*Cos[c])*Csc[c])/d + (2*Sec[c
/2]*Sec[c/2 + (d*x)/2]*(-(A*Sin[(d*x)/2]) + B*Sin[(d*x)/2]))/d))/((B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])) +
 (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(
A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Si
n[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^
2]*(a + a*Sec[c + d*x])) - (B*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - Arc
Tan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sq
rt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(B + A*Cos[
c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 1.775, size = 244, normalized size = 2.8 \begin{align*}{\frac{1}{ad}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( A{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +3\,A{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -B{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -B{\it EllipticE} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) \right ) + \left ( 2\,A-2\,B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+ \left ( -A+B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A-2*B)*sin(1/2*d*x+1/2*c)
^4+(-A+B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sqrt{\cos{\left (c + d x \right )}}}{\sec{\left (c + d x \right )} + 1}\, dx + \int \frac{B \sqrt{\cos{\left (c + d x \right )}} \sec{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)**(1/2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A*sqrt(cos(c + d*x))/(sec(c + d*x) + 1), x) + Integral(B*sqrt(cos(c + d*x))*sec(c + d*x)/(sec(c + d*
x) + 1), x))/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{\cos \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(a*sec(d*x + c) + a), x)